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Instabilities of a horizontal shear flow with a
free surface
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(Received 4 August 1997 and in revised form 15 December 1997)

The simple shear-flow model of Stern & Adam (1973), in which a layer of uniform
vorticity and depth overlies an infinitely deep fluid, is here extended by the addition
of an upper fluid layer of uniform thickness and constant velocity. In this way many
experimentally observed velocity profiles can be approximated. The normal mode
instabilities of such a model can be found analytically, and their properties calculated
through the solution of a quartic polynomial equation. The dispersion relation is here
determined and illustrated in its dependence on the Froude number and on the ratio
H1/H2, where H1 and H2 denote the mean depths of the surface layer and the base
of the shear layer, respectively. It is found that two branches of instability which are
distinct when H1/H2 is moderate or small can become merged when H1/H2 > 0.4924.
Also calculated are the fastest-growing modes, and their wavelengths. The results are
applied to some examples of surface flows generated by towed bodies, and to steady
spilling breakers.

1. Introduction
The theory of the stability of surface shear flows has important applications to the

study of surface wakes behind ships or towed bodies (Dimas & Triantyfallou 1994);
to the stability of the crest of a spilling breaker (Coakley & Duncan 1997); and to
wind-drift currents at the sea surface (Stern & Adam 1973). Such currents are usually
unstable, and over large horizontal distances may develop into a turbulent mixing
layer. But over short distances they may usefully be treated as steady horizontal
shear layers; see for example Peregrine (1974). Theoretical interest then focuses
on the normal instabilities of such layers, especially those with the largest growth
rates, which can give an indication of the horizontal length scales of the observed
perturbations.

The presence of a free surface is an additionally interesting feature. For, whereas
mixing layers in an unbounded fluid have been well studied (see especially Winant &
Browand 1974), those near a free surface are less well understood.

The simplest theoretical model of a surface shearing current was that due to Stern
& Adam (1973), who assumed a surface layer of uniform thickness and vorticity
overlying a stationary layer of infinite depth. Other models or developments of
the same model are due to Kawai (1977), Voronovich, Lobanov & Rybak (1980),
Milinazzo & Saffman (1990), Caponi et al. (1991), Morland, Saffman & Yuen (1991)
and Shrira (1993).

Recently Dimas & Triantyfallou (1994) have computed the linear stability of a
shear flow with a continuous velocity profile of the form

u = U sech2 by (1.1)
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Figure 1. Sketch of the velocity profile for the model flow.

(see figure 9 below) and have followed the nonlinear development of a typical
sinusoidal instability. It is the linear aspect of the problem which will be considered
here. To be precise, Dimas & Triantyfallou find, as in an earlier paper (Triantyfallou
& Dimas 1989) that the normal instabilities of the profile (1.1) appear to be of
two general kinds: Branch I, which are important at low wavenumbers, and Branch
II which are important at high wavenumbers for low Froude numbers, or at low
wavenumbers for high Froude numbers. However, their method of calculation is
elaborate and their numerical results are consequently incomplete. There seems to be
good reason for adopting a much simpler model, representing the observed current
profile almost equally well, but amenable to an analytical treatment.

In fact such a model is readily available. It involves simply an extension of the
shear-flow model of Stern & Adam (1973) by the addition of a layer of uniform flow
immediately below the surface. The model profile depends on three parameters: the
surface current U and the depths H1 and H2 of the two upper layers. One particular
combination of these parameters fits equation (1.1) reasonably well. Moreover, there
is no difficulty in exploring other values of the parameters since the solution to
the stability problem is now reduced to determining the roots of a simple quartic
polynomial. Not only is this procedure much faster than a purely numerical method,
it is also more complete and accurate, and reveals the relation between different
branches of the solution in a more transparent way.

In one special case (H1 = 0) the flow reduces to that of Stern & Adam (1973), and
in another case (H1 = H2) it reduces to a thin shear layer at a depth H2 below the
free surface.

The plan of the paper is as follows. Section 2 introduces the model and the
basic equations. Section 3 treats especially the boundary conditions, and derives the
dispersion relation. This is then discussed, with examples, in § 4; see figures 2 to 5.
The boundaries of unstable regions are shown in figure 6. In § 5 we discuss some
special cases. Some comparisons with continuous velocity profiles are given in § 6 and
in §§ 7 and 8 we apply the theory to the flow observed in a steady spilling breaker. A
general discussion follows in § 9.

2. Basic equations
Consider a volume of inviscid, incompressible fluid whose velocity u is directed

horizontally in the x-direction, and depends only on the vertical coordinate y; see
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figure 1. In particular we take

u(y) =

U, −H1 < y < 0
Ω(y +H2), −H2 < y < −H1

0, y < −H2

(2.1)

so that by continuity at y = −H1

U = Ω(H2 −H1). (2.2)

It will be convenient to denote the mean depth of the shear layer by

H = 1
2
(H1 +H2) (2.3)

and to define the Froude number F by

F2 = U2/gH. (2.4)

Then, if the surface tension T is neglected, the basic flow depends only on two
dimensionless numbers: H1/H and F .

We shall consider sinusoidal perturbations of this flow travelling with phase speed
c to the right. In a frame of reference travelling with the phase speed the two
components (u, v) of the fluid velocity will be given by expressions of the following
form. In the upper layer,

u= (U − c) + ik(Beky − Be−ky)eikx,
v = k(Aeky + Be−ky)eikx.

}
(2.5)

It is understood that on the right the real part is to be taken. In the intermediate
layer,

u=Ω(y +H2)− c+ ik(Ceky − De−ky)eikx,
v = k(Ceky + De−ky)eikx.

}
(2.6)

In the lowest, semi-infinite layer

u=−c+ ikEeky+ikx,
v = kEeky+ikx.

}
(2.7)

These expressions satisfy the equation of continuity ∂u/∂x+ ∂v/dy = 0. The vorticity
is given by

ζ =
∂v

∂x
− ∂u

∂y
= 0, −Ω, 0 (2.8)

in the three regions respectively.

3. Boundary conditions
It is assumed that at the free surface the pressure is a constant (zero), and that at

the two interfaces both the pressure and the normal velocity are continuous.
The horizontal derivative of the pressure p is found from the momentum equation

∂

∂x

[
p+ gy + 1

2
(u2 + v2)

]
= ζv. (3.1)

The density is taken to be unity. On linearization, equation (3.1) becomes

∂

∂x
(p+ uu′) = ζv, (3.2)
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where a prime denotes the perturbation velocity. Using the equation of continuity we
then have

∂p

∂x
= u

∂v

∂y
+ ζv. (3.3)

At the free surface y = η, say, the vertical velocity v is equal to u∂η/∂x†. In
the linearized theory the boundary condition at the surface can be replaced by the
condition that

p = (gη − T∂2η/∂x2) (3.4)

at the mean surface level y = 0. Differentiating with respect to x then gives us

u

(
u
∂v

∂y
+ ζv

)
= gv − T∂2v/∂x2 on y = 0. (3.5)

From now on until § 7 we neglect surface tension by taking T = 0. Since ζ vanishes
in the upper layer we obtain as the upper boundary condition

(U − c)2 ∂v

∂y
= gv on y = 0. (3.6)

Hence from equation (2.5)

(U − c)2k(A− B) = g(A+ B). (3.7)

At the interface between the two upper layers, continuity of the normal velocity
implies, to first order, the continuity of v. This and the continuity of ∂p/∂x gives us

Ae−kH1 + BekH1 =Ce−kH1 + BekH1 ,

(U − c)2(Ae−kH1 − BekH1 ) = (U − c)2(Ce−kH1 − Dek1H1 )
−(U − c)(Ω/k)(Ce−kH1 + DekH1 ).

 (3.8)

At the lower interface we find similarly

Ce−kH2 + DekH2 =Ee−k2H2 ,

c2(Ce−kH2 − DekH2 ) + c(Ω/k)(Ce−kH2 + DekH2 ) = c2Ee−kH2 .

}
(3.9)

If we write for short

λ1 = e−2kH1 , λ2 = e−2kH2 (3.10)

and introduce the notation

c0 = (g/k)1/2, q = U/c0, Z =
c−U
c0

(3.11)

and

β =
Ω

kc0

, (3.12)

† This is an approximation, based on the assumption that the rate of growth of the instability is
sufficiently small.
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then equations (3.7), (3.8) and (3.9) become

Z2(A− B) = A+ B,

λ1A+ B = λ1C + D,

Z(λ1A− B) = Z(λ1C − D) + β(λ1C + D),

λ2C + D = λ2E,

(Z + q)(λ2C − D) + β(λ2C + D) = (Z + q)λ2E.


(3.13)

Eliminating E between the last two of these equations gives us

(Z + q)D − 1
2
β(λ2C + D) = 0 (3.14)

and we are left with four linear equations for A,B, C and D with matrix
(Z 2 − 1) −(Z2 + 1) 0 0

λ1 1 −λ1 −1

λ1Z −Z −λ1(Z + β) (Z − β)

0 0 − 1
2
λ2β (Z + q − 1

2
β)

 . (3.15)

The vanishing of the determinant of this matrix gives an equation for Z and hence
the dispersion relation.

4. The dispersion relation
By manipulating rows and columns in (3.15) the vanishing of the determinant

becomes equivalent to∣∣∣∣∣∣∣∣∣∣∣

(Z2 − 1) 2 0 0

λ1 −(λ1 + 1) λ1 −1

0 Z λ1α (Z − α)

0 0 λ2α (Z + q − α)

∣∣∣∣∣∣∣∣∣∣∣
= 0, (4.1)

where

α = 1
2
β. (4.2)

On expansion of the determinant, equation (4.1) reduces to

λ1Z(Z2 − 1)(Z + q)

+ λ1(λ1 − λ2)α Z(Z2 + 1)

+ α [λ1q − (λ1 − λ2)α ]
[
λ1(Z

2 + 1) + (Z2 − 1)
]

= 0, (4.3)

a quartic equation for Z , which may be solved precisely by radicals; see for example
Turnbull (1957).

Having obtained Z , the relation between the wave frequency ω (relative to deep
water) and the wavenumber k, can be found from

ω = kc = kc0(Z + q), (4.4)

where c0 = (g/k)1/2. For real values of the wavenumber k, the phase speed is given
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Figure 2. The radian frequency σr and rate of growth σi as functions of k in dimensionless units,
when h1 = 0.5, F = 1.5.
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Figure 3. As in figure 2, when h1 = 0.7, F = 1.5.

by ωr/k and the rate of growth by ωi, where ωr and ωi are the real and imaginary
parts of ω. It is appropriate to plot ωr and ωi as functions of k for given values of
the Froude number F = U/(gH)1/2 and the depth ratio H1/H .

For convenience in presentation we introduce the dimensionless wavenumbers and
frequency

κ = kH, (σr + σi) = (ωr + ωi)H/U (4.5)

and also the depth ratios

h1 = H1/H, h2 = H2/H (4.6)

so that h1 + h2 = 2.
A typical example, when h1 = 0.5 and F = 1.5, is shown in figure 2. For large values

of κ there are four real roots Z yielding four separate branches of σr (figure 2a).
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Figure 4. As in figure 2, when h1 = 0.3, F = 0.5.
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Figure 5. Enlargement of figure 4, showing the ‘bubble’ of instability near κ = 4.73.

However between Q and R two of the roots become a conjugate complex pair, and
the segment QR is doubled; this is indicated by a ‘parallel’ mark. Similarly between 0
and P another branch is doubled. In each of the intervals 0P and QR, σi is non-zero
(figure 2b).

Figure 3 shows a second example, h1 = 0.7, F = 1.5. In this case the two points P
and Q have coalesced into PQ. The double branch is now continuous through PQ;
the single branch crosses it with no exchange of stability.

A third example, F = 0.5, h1 = 0.3 is shown in figure 4. This case is similar to figure
2, except that Q and R have moved very close together. A blow-up of the region QR
(figure 5) shows that there is a small ‘bubble’ of instability between Q and R.

To obtain a synoptic view, we have plotted in figure 6(a) the wavenumbers κ
corresponding to the points P ,Q, R, that is to say the points of marginal stability, for
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Figure 6. Synoptic stability diagrams: full curves, loci of marginal stability; crosses, points of
maximum growth rate at constant Froude number F . (a) h1 = 0.3, (b) h1 = 0.5, (c) h1 = 0.7, (d)
h1 = 0.9.

values of the Froude number F (on the vertical axis). It will be seen that there are
two distinct areas of stability and two areas of instability. Similarly in Figure 6(b),
when h1 = 0.5. However in figure 6(c), when h1 = 0.7, the two areas of instability
have joined in the middle, creating altogether three separate areas of stability. This
situation is accentuated in figure 6(d), when h1 = 0.9. Now two of the stable areas have
moved far to the right, and only a very thin wedge of stability at small wavenumbers
remains.

The pinch-off point between figures 6(b) and 6(c), when the two unstable areas just
meet, can be determined numerically (see the Appendix) as h1 = 0.6599 (i.e. H1/H2 =
0.4924), and F = 1.5361. The dispersion relation for this particular configuration is
shown in figure 7. Three modes coincide at the wavenumber κ = 1.1091.

In each of figures 6(a) to 6(d) the wavenumbers corresponding to maximum rates
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Figure 8. (a) The maximum growth rate σi as a function of F , at various values of h1.
(b) The corresponding wavenumber k(σi).

of growth (σi)max have been marked by cross plots. In figures 6(c) and 6(d) the circular
plots along the arc AB correspond to minimum growth rates |σi|.

Of special interest are the wavelengths (2π/k) of the fastest-growing modes. The
wavenumbers κ are shown in figure 8(a) as functions of F , for depth ratios h1 ranging
from 0.1 to 0.7. Generally, the wavenumbers increase with increasing h1, but decrease
with increasing F , both for Branch I and for Branch II.

The corresponding rates of growth are shown in figure 8(b). Again, the rates of
growth generally increase with increasing depth ratio, that is, with decreasing thickness
of the vortical layer. The growth rates on Branches I and II are of the same order of
magnitude.
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5. Limiting cases
As h1 → 0 so that the upper layer becomes infinitesimally thin, it is found that the

branch point P in figure 2 moves leftwards towards the origin O. In the limit, the
left-hand curve in figure 6(a) coincides with the vertical axis k = 0. Setting λ1 = 1 we
find that equation (4.3) becomes

Z(Z 2 − 1)(Z + q) + (1− λ2)α Z(Z2 + 1) + 2α [q + (λ2 − 1)α ]Z2 = 0 (5.1)

which has a zero root Z . Removing this root we are left with a cubic equation which
reduces to

Z 3 + (m+ 2q)Z2 − (1 + 2αm)Z + m = 0, (5.2)

where

m = α (1− λ2)− q. (5.3)

This is the same equation as found by Stern & Adam (1973).
Suppose on the other hand that h1 tends to 1, so that (H2 − H1)/H → 0 and the

shear layer becomes very thin, while remaining at a finite distance H below the free
surface. Then we have

λ1 − λ2 ∼ 2κ(H2 −H1),

Ω = U/(H2 −H1)

}
(5.4)

and hence α = Ω/2kc0 becomes large while

(λ1 − λ2)α→
U

c0

= q. (5.5)

Then equation (4.3) reduces to

λ1(Z
2 + 1) + (Z2 − 1) = 0 (5.6)

so

Z2 =
1− λ1

1 + λ1

= tanh kH1 (5.7)

and

σ = kU ± (gk tanh κH1)
1/2. (5.8)

Thus σ has two finite values, which correspond to waves travelling at a speed
±[(g/k) tanh kH1]

1/2 relative to the surface current U. They are similar to gravity
waves in the upper layer, propagated as though this shear layer were a rigid boundary.

The remaining roots of equation (4.3) tend to infinity as (H2 − H1)/H → 0 for
finite k. They represent instabilities of the shear layer itself. As shown in Batchelor
(1967, Section 7.1), for example, a shear layer of thickness ∆h in an unbounded fluid
is unstable to all modes with wavenumber k of order less than (∆h)−1. In the presence
of a free surface, however, the modes can be significantly modified.

Thirdly let us consider the case of low Froude number F . This is the ‘rigid-lid’
approximation, when the free surface is assumed to be planar. Then q and α are both
of order F−1/2. Equation (4.3) has two roots

Z ∼ ±1, c ∼ U ± c0 (5.9)

which correspond to surface gravity waves travelling in either direction with high
speed c0 relative to the surface current U. The remaining roots are approximately
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Figure 9. The velocity profile given by equation (1.1) (continuous curve), and its approximation by
the model profile (2.1).

solutions of the quadratic equation

Z(Z + q) + (λ1 − λ2)αZ + α[q − (1− λ2/λ1)α](λ1 − 1) = 0 (5.10)

which is equivalent to

(c−U)c+ (λ1 − λ2)(Ω/2k)(c−U) + (Ω/2k)[U − (1− λ2/λ1)(Ω/2k)](λ1 − 1). (5.11)

In the further limit k → 0 (waves long compared to the depths of the two layers) we
have

(λ1 − λ2)(Ω/2k) = (H2 −H1)Ω = U (5.12)

and so

(c−U)(c+U) = 0 (5.13)

or c = ±U, to lowest order.

6. Comparisons with continuous profiles.
The profile given by equation (1.1), which was adopted by Dimas & Triantyfallou

(1994) to fit experimental data of the shear flow in the wake of a hydrofoil is shown
in figure 9 (continuous curve). The constant b in equation (1.1) is chosen so that at
the mid-point where u = 1

2
U the depth −y is equal to unity. This implies that

eby =
√

2− 1 (6.1)

when y = −1, and hence

b = 0.8814. (6.2)

To approximate this profile we may draw a tangent to the curve at the mid-point
(u, y) = ( 1

2
U,−1) and use this to represent a layer of constant shear Ω. The velocity
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Figure 10. The growth rate σi as a function of wavenumber for the model profile in figure 9.

gradient at the mid-point is given by

du

dy
= −2bU tanh by sech2by = (b/

√
2)U (6.3)

and hence

−h1 = 1− (b
√

2)−1 = 0.1977. (6.4)

In figure 10 we show the growth rates σi calculated as in § 5, when h1 takes the value
(6.4), and for Froude numbers F = 0.5, 1.5, 2.5 and 5.5. The two families of curves
are qualitatively similar to those calculated numerically for the velocity profile (1.1)
by Dimas & Triantyfallou (1994), and shown in their figure 9. Apparently they were
unable to present accurate results when σi < 0.01. As noted by Morland et al. (1991)
for the simpler case of the wind-induced drift current, the piecewise linear solution
has narrower bands of unstable modes and somewhat higher growth rates.

As a second application consider the velocity profile

u = U[1− tanh (by2/b2)] (6.5)

representing the shearing current in the second wave trough behind a steady breaking
wave (Duncan & Dimas 1996). Following the same procedure as before we find that
the mid-point of the current occurs when

eby
2/d2

=
√

3, y = d (6.6)

and hence

b = 0.5493. (6.7)

Fitting the shear layer by a tangent at the mid-point of the velocity profile we find in
a similar way that

h1 = 1− (3b)−1 = 0.3132. (6.8)
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Figure 11. (From Coakley & Duncan 1996). Observed fluid velocities relative to a 15 cm hydrofoil
towed at a speed of 69 cm s−1 to the left; average of ten runs.

The Froude number F = U/(gH)1/2 may be determined from their figure 16, in which
U = 14.8 cm s−1 and H = 3.9 cm, giving F = 0.239. The dispersion relation, which is
similar to figure 4 above, shows there is one maximum growth rate at a dimensionless
wavenumber κ1 = 0.338 and a very small bubble of instability at κ2 = 18.3. These
correspond to dimensional wavelengths 2π/k1 = 72.5 cm and 2π/k2 = 1.34 cm
compared with the two wavelengths of 36 cm and 1.4 cm calculated by Duncan and
Dimas (1996)†. The present calculations indicate that the rate of growth of the second
instability was exceedingly small.

7. Application to a steady, spilling breaker
Thirdly we may apply our model to a set of laboratory measurements of the velocity

field in a wave induced by a towed hydrofoil (Coakley & Duncan 1996). Figure 11,
reproduced from their paper, shows an averaged velocity field from a 15 cm foil towed
at a speed of 69 cm s−1, in a reference frame travelling with the foil. This indicates
that the fluid at the surface has a low velocity compared to the flow beneath. By
fitting selected profiles at five equally spaced profiles, as in table 1, we can deduce the
parameters h1 and F for each profile, as shown in the table. Then from figure 8 above
we find the wavenumbers κ1 and κ2, and the corresponding wavelengths L1 and L2.

A complete comparison with the observed surface profile in figure 11 would have
to take account of energy fluxes, including the nonlinear interaction of the waves
with the mean flow. At present we simply note that the longer wavelengths L1 range
from 11 to 22 cm, which is comparable to that of the more prominent fluctuations
in the observed surface elevation. The shorter wavelengths L2 lie between 1.6 and
4.0 cm. These are subject to capillarity, which can be taken into account as in § 7
below. Additional data, including an instantaneous time sequence of the free surface,
would enable the comparison to be pursued further.

† It may be noted that the authors adopt a different definition of F from that given in § 4 above
or in Triantyfallou & Dimas (1989).
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x H1 H2 U H L1 L2

(mm) (cm) (cm) (cm s−1) (cm) h1 F κ1 (cm) κ2 (cm)

20 0.20 0.42 66 0.31 0.64 3.8 0.13 15 1.24 1.6 (1.6)
38 0.25 0.79 58 0.52 0.48 2.6 0.29 11 1.07 3.1 (3.0)
56 0.27 0.85 49 0.56 0.48 2.1 0.27 13 1.16 3.0 (2.9)
74 0.27 1.17 45 0.72 0.37 1.7 0.24 19 1.21 3.8 (3.5)
92 0.27 1.32 45 0.79 0.34 1.6 0.23 22 1.25 4.0 (3.8)

Table 1. Fitted parameters for the current profiles in figure 11, and the predicted dominant
wavelengths

8. The inclusion of capillarity
The foregoing analysis can easily be modified to include the effect of capillarity.

For, it will be seen that the solution of the dispersion relation (4.3) is formally
unaltered, for any given wavenumber k, if only the gravity-wave velocity c0 = (g/k)1/2

is replaced by the full capillary-gravity velocity c0 = (g/k + Tk)1/2. In other words g
has only to be replaced by

g′ = g + Tk2. (8.1)

Equivalently the Froude number F = U/(gH)1/2 is replaced by U/(g′H)1/2. The
corresponding dispersion relations, and the synoptic diagrams, can be constructed
as in figures 2–7, but these will not be shown here. Each depends on the new
dimensionless parameter T/gH2, which in the present paper has been set to zero.
One example of a dispersion relation in which this parameter is not zero, but on the
other hand h1 is zero, is shown in figure 3 of Longuet-Higgins (1994).

Proceeding in this way we have recalculated the wavenumbers and wavelengths
shown in table 1. The changes to k1 and L1 are negligble. The modified values of L2

are shown in parentheses.

9. Discussion and conclusions
Extending the single-shear-layer model of Stern & Adam (1973) by the addition

of an extra surface layer, we have been able to reproduce the stability properties of
typical current profiles in the wake of hydrofoils or behind breaking waves, and to
simplify their discussion. The previous classification of unstable normal modes into
‘Branch I’ and ‘Branch II’ has been confirmed, but with the restriction that over some
ranges of Froude number and depth ratio the two branches are found to merge.
A reasonable agreement has been found with the calculations in Duncan & Dimas
(1996), and also with the observations by Coakley & Duncan (1997).

It is clear that a simplified model such as that used here can have several advantages
over an elaborate numerical scheme. The calculations can be carried out much faster
and with greater completeness and accuracy, so that a synoptic view of the solutions
can quickly be achieved. At the same time, the slight loss in precision resulting from
the initial fitting of the model to the observed current profile is probably unimportant
for most purposes.

We have discussed here only the initial development of the instabilities, using linear
theory, it being generally assumed that the subsequent flows will be dominated by the
most unstable modes. A discussion of the nonlinear stages of development is outside
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Figure 12. Plot of F (1) and F (2) as functions of h1, close to the critical point.

the scope of this paper, though a nonlinear theory might well be based on the present
simplified model.

In this paper we have considered only two-dimensional instabilities. The three-
dimensional instabilities of a surface shear layer are likely to be of considerable
interest under typical oceanic conditions. Such instabilities could well be investigated
by means of a similar simplified approach.

I am indebted to Professor J. H. Duncan for correspondence and for supplying a
preprint of Coakley & Duncan (1997). This work has been supported by the Office
of Naval Research under Contract N00014-94-1-0008.

Appendix. Determination of the critical values of h1 and F
We take advantage of two properties of the limiting case: (a) Z is real, and (b) Z is

a triple root of the quartic equation (4.3). Thus if the polynomial expansion of (4.3)
is

f(Z) ≡ Z4 + a1Z
3 + a2Z

2 + a3Z + a4 = 0 (A 1)

then we have also

f′(Z) ≡ 4Z3 + 3a1Z
2 + 2a2Z + a3 = 0 (A 2)

and

f′′(Z) ≡ 12Z2 + 6a1Z + 2a2 = 0. (A 3)

From (A 3) we have at once

Z = −[3a1 + (9a2
1 − 24a2)

1/2]/12 (A 4)

and on substituting into (A 1) and (A 2) we find two simultaneous relations:

φ1(F, h1, κ) = 0, φ2(F, h1, κ) = 0. (A 5)
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For any given value of h1 slightly exceeding the critical value, one can solve equations
(A 5) for F and κ by Newton’s method of successive approximation. There are two
solutions (F (1), κ(1)) and (F (2), κ(2)), in general. Close to the critical point, (F (n), h1) lies
closely on a parabola; see figure 12. The critical values of h1 and F correspond to the
vertex of the parabola, and similarly for κ(n) and h1.
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